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ABSTRACT: The development of noninvasive analytical
techniques is of interest to the field of chronobiology, in
order to reveal the human metabolome that seems to show
temporal patterns and to predict internal body time. We report
on the real-time mass spectrometric analysis of human breath
as a potential method to be used in this field. The breath of 12
subjects was analyzed during 9 days by secondary electrospray
ionization-mass spectrometry (SESI-MS). The samples were
collected during four time slots: morning (8:00−11:00), before lunch (11:00−13:00), after lunch (13:00−15:00), and late
afternoon (15:00−18:00). A total of 203 mass spectra were statistically analyzed. Univariate analysis revealed a number of
features with a marked temporal behavior. Principal component analysis/canonical analysis showed a clear temporal evolution of
the breath patterns. A blind cross-validation yielded 84% of correct classifications of the time slot at which the breath samples
were collected. We conclude that this approach seems to have potential for the investigation of biological clocks, including the
description of internal body time, which may have important implications for the timing of pharmacotherapy.

Biological clocks have been studied for centuries and
nowadays, chronobiology is an active discipline that seeks

to understand the effect of time in living systems.1 For example,
the circadian clock is known to play a central role in physiology
and its disruption is linked with a number of health disorders
like obesity and diabetes.2 In addition, as our understanding of
this process grows, pharmaceutical science is now recognizing
that biological clocks play a major role in disease activity, and
therefore the time at which a drug should be administered may
be important (i.e., chronotherapy).3 For this reason, important
efforts are devoted to reveal the human metabolome that shows
temporal patterns4 and to predict internal body time.5

Therefore, there is an obvious interest in developing new
analytical tools to investigate biological clocks. The present
work explores the potential of breath analysis to characterize
human biological clocks.
Just like other biofluids (e.g., urine, saliva), exhaled breath

carries relevant biochemical information. Given that exhaled
breath can be analyzed noninvasively, it is a most appropriate
approach to investigate temporal fluctuations of the metab-
olome. Proton transfer reaction-mass spectrometry (PTR-MS)
and selected ion flow tube-mass spectrometry (SIFT-MS) are
two real-time techniques available for the analysis of breath. For
example, ammonia, acetone, isoprene, and ethanol are among
the compounds whose fluctuations over time have been
investigated with these techniques.6 In addition, we have
shown that breath can be analyzed in real time by injecting
exhaled breath into electrospray plumes of pure solvent, which
causes ionization of relevant exhaled compounds.7 Following
this approach, we have detected a number of compounds never
observed before in breath by real-time mass spectrometry. In

the present study, we show that this method allows for the
investigation of diurnal fluctuations in the composition of
exhaled breath in humans.

■ EXPERIMENTAL SECTION

Subjects and Sampling. A total of 12 nonsmoking
subjects (5 females/7 males) participated in this study. The
sampling took place twice in the morning (prior to lunch) and
twice in the afternoon (after lunch). The samples were
allocated into four “time-slot” categories: morning (8:00−
11:00), before lunch (11:00−13:00), after lunch (13:00−
15:00), and late afternoon (15:00−18:00). Measurements were
collected during nine consecutive working days. Note that not
all the subjects could join the experiments all the days during
the four sampling times, ranging the number of samples per
subject from 10 to 26. During each individual measurement,
each subject breathed three consecutive times into the system.
To minimize confounding effects, the participants refrained

from eating, drinking, and brushing their teeth at least 30 min
prior to the measurements. The local ethical committee
approved the study (EK 2012-N-25) and all subjects gave
written informed consent to participate.

Real-Time Mass Spectrometric Measurements. A
quadrupole time-of-flight (QTOF; Waters, Ultima) was slightly
modified to allow for the admission of exhaled breath. The
participants breathed through a disposable mouthpiece into a
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Teflon tube (50 cm long, 3 mm i.d.), which was connected to
the curtain gas channel of the mass spectrometer. The sampling
Teflon tube was coated with heating tape maintained at a
temperature of 90 °C. Thus, the exhaled breath samples were
delivered coaxially to the sampling orifice through the
commercial curtain gas nozzle, much in the same way as the
early measurements of Fenn and colleagues.8 To make sure that
all the subjects breathed at the same flow rate, they were asked
to breathe keeping the pressure through the sampling tube at
20 mbar (monitored by an electronic manometer visible to the
subjects). This pressure corresponded to a flow rate of 3.8 L/
min. As the breath sample issued the nozzle, it collided with an
electrospray cloud formed by a lab-built nano electrospray
source (PicoTip emitter i.d. 20 μm). Previous mechanistic
studies suggest that water-based electrosprays are more efficient
in ionizing compounds containing amine moieties,9 and for this
reason we electrosprayed water (0.2% formic acid) infused at
∼100 nL/min (2 kV, ∼400 nA). The electrospray tip was
located 6 mm from the sampling cone and 1 mm off the
symmetry axis.
Statistical Analysis. The three consecutive exhaled breath

mass spectra produced by each subject were averaged by using
Water’s MassLynx software. The averaged raw mass spectra
were then saved as .txt files. These .txt files were post processed
by using the commercial software MATLAB (R2011b,
Mathworks Inc.). First, each mass spectrum was interpolated
to 10 000 mass-to-charge (m/z) values (56−400 Da in steps of
0.0187 Da). The 203 mass spectra were normalized by
standardizing the area under the curve to the total median.
After individually normalizing every signal, they were further
scaled to adjust the overall maximum intensity to an overall
maximum intensity of 100. Finally, we assembled a 203 × 10
000 matrix with each of these normalized mass spectra. Each of
the 203 mass spectra was categorized either as morning (n =

55), before lunch (n = 46), after lunch (n = 48), or late
afternoon (n = 54).
First, univariate analysis was employed to extract the most

significant features discriminating these four groups and
therefore remove the noisiest part of the spectra from further
modeling.10 A Kruskal−Wallis test (nonparametric one-way
analysis of variance) was performed for the task. A total of 1761
m/z values yielded p-values < 10−4 (Bonferroni corrected at
95% confidence interval). Thus, the original 203 × 10 000
matrix was reduced to 203 × 1761 (included as Supporting
Information). Further statistical analysis was performed as
described previously.11 The 203 × 1761 matrix was
autoscaled.12 This resulting matrix was subjected to principal
component analysis (PCA) and the numbers of principal
components explaining most of the variance were identified and
used for further analysis. The resulting PCA score submatrix
was then subjected to one-way multivariate analysis of variance
(MANOVA) which, as performed by MATLAB, provides in
addition canonical analysis (CA). The resulting canonical
variables are linear combinations of the original variables,
chosen to maximize the separation between groups. The
interpretation of the resulting discriminant functions to
ascertain the contribution of the different m/z values to the
separation between groups was performed by standardizing the
coefficients as described previously.13

Finally, the breath samples’ categories were predicted using a
k-fold cross validation (k = 5%). The data set was randomly
split (i.e., Monte Carlo repetitions) into training and test sets
1000 times. During each of these 1000 iterations, the training
set was subjected to Kruskal−Wallis/PCA/CA analysis. Then
the test set, which was completely disjoint of the model set, was
projected into the Kruskal−Wallis/PCA/CA subspace gen-
erated by the training set, and finally a k-nearest neighbor
classifier (k = 1, Euclidean distance) assigned the sample class.

Figure 1. Typical series of real-time breath analyses recorded from 11:00 a.m. to 11:55 a.m. Relative intensity vs time of four compounds (m/z 59,
139, 219, and 302) present in the breath of ten subjects. Each subject provided three consecutive breath samples, which have a comparable height
within each subject, but are different between the individuals.
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■ RESULTS AND DISCUSSION

Figure 1 shows the intensity as a function of time of some
compounds detected in breath. It illustrates a typical series of
measurements between 11 a.m. to 12 a.m. for ten subjects
(labels indicated at the top of the figure). For each compound
and for a given individual, the signal increased above the
background level during each breath stroke. The three
individual consecutive measurements had comparable heights,
but there were differences between individuals. For example,
the compound at m/z 59 was found to be present at highest
concentrations in subjects 2 and 9 and lowest in subject 4. This
ion has been previously characterized and assigned to
protonated acetone.7b This metabolite has been extensively
studied by PTR-MS and SIFT-MS. For example, it has been
found to show substantial intra- and intersubject variability,
with typical concentrations in the 100−1000 parts-per-billion
range.14 In this regard, quantification in SIFT-MS and PTR-MS
is more readily achievable than in SESI-MS, mostly due to the
different response of the mass spectrometers to which SESI is
interfaced. For this reason, calibrations with standards are
required in SESI-MS for quantification. For example,
concentrations of free fatty acids in the 100 ppt range were
found in breath following such a procedure.7d Similar
quantitative measurements have concluded that limits of
detection below ppt are achievable by combining SESI with
modern mass spectrometers.15

Some other compounds could only be detected in a few
subjects. For example, m/z 139 was prominent for subject 1
and almost absent or completely absent for the rest of the
individuals. The existence of individual metabolic phenotypes
has been shown through the analysis of urine and plasma via
nuclear magnetic resonance (NMR).11 The data shown in
Figure 1, previous work,7d and further (unpublished) results
supports this hypothesis through the analysis of exhaled breath.
With the aim of identifying individual peaks which showed

significant differences between the time slots during which the
breath samples were analyzed, we conducted a Kruskal−Wallis
test. Figure 2 displays four box plots for some of the
representative peaks showing different intensities depending
on the time of the day at which the breath samples were
measured. The m/z value and the corresponding p value are
quoted on top of each box plot. For example, m/z 117 was
found to increase during the course of the day. A multi-
comparison test (Bonferroni; 95% confidence interval) revealed
that “morning” and “before lunch” measurements had
significantly different mean ranks compared to the other
three groups. One peak at m/z 141 showed comparable average
values for both morning measurements, and higher (also
comparable) values for the afternoon measurements. The
multicomparison confirmed significant differences between the
two morning measurements vs the two afternoon experiments.
Some other peaks showed a different behavior. For example,
the peak at m/z 211 increased steadily over the morning,
reached a maximum after lunch, and declined during the late
afternoon. The multicomparison indicated that after lunch
levels of this compound were significantly higher than early and
before lunch measurements. In contrast, one peak at m/z 199
declined progressively from morning to afternoon. The
Bonferroni posthoc test yielded that both morning values
were significantly higher than the afternoon mean values.
This illustrates that a common core of compounds present in

the breath of a group of healthy volunteers seem to have a

similar temporal behavior during the course of the day. This
notion was strengthened through further multivariate analysis.
As described above, the 1761 m/z variables resulting from the
Kruskal−Wallis test were retained for PCA. The resulting score
submatrix (110 principal components) explaining 99.5% of the
variance was subjected to CA, which yielded the existence of
three dimensions (all p-values <0.005) which maximize the
separation of the four categories analyzed. Figure 3a shows the
projection of the original mass spectra onto the first two
canonical dimensions. It becomes clear that that there exists a
temporal evolution during the course of the day common to all
subjects investigated and repeated during 9 nonconsecutive
days. Parts c−d of Figure 3 show the loading plots, illustrating
the relative contributions of each peak in the spectrum to the
separation shown in Figure 3a.
The PCA/CA model was further challenged through a k-fold

cross validation (k = 5%) with the aim of discarding potential
overtraining. Thus, 10 “unknown” breath mass spectra were
projected onto the PCA/CA subspace generated by the
remaining 193 mass spectra, and classified accordingly (knn
classifier). This process was repeated 1000 times and the test
samples were each time shuffled (i.e., Monte Carlo repetitions)
and the most significant features reselected in each iteration.
The overall correct classification score was 84%. The confusion
matrix shown in Figure 3b summarizes the results of this blind
classification exercise. The reddish diagonal indicates that most
of the times the test sample presented to the model was
correctly classified. Clearly, each time slot of the day
investigated had a common characteristic breath signature in
all subjects that could be recognized. Interestingly, when this
was not the case, the sample was most of the times assigned to
an adjacent class. For example, 92.5% of the morning samples

Figure 2. Box plot of some exemplarily features found to show
temporal oscillations. The p-values shown on the top of the figures
were computed upon a Kruskal−Wallis test. The figures on the right
show the results of a multicomparison test (Bonferroni corrected).
They display each group’s mean represented by “○” and an interval
around the symbol (95% confidence level). Two means are
significantly different if their intervals are disjoint, and are not
significantly different if their intervals overlap.
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(8−11) were correctly classified, while 7.5% of them were
assigned as “before lunch” (11−13). A plausible explanation for
the misclassified mass spectra is that, even though the sample
was collected and tagged at a given time slot, the internal body
timeand therefore the breathprint was closer to the
adjacent time slot. Note also that the discretization of the
samples into the four classes led to some samples collected
some 10 min apart, but falling into different time-slots
categories. Thus it is reasonable to obtain erroneous
classifications with the adjacent categories. For example, the
worst case was for the measurements taken between 1 p.m. and
3 p.m. (af ter lunch), which were correctly classified 72% of the
times, and it was confused with measurements from 11 a.m. to
1 p.m. 15% of the times, and 13% of the times with breath
samples recorded afterward (3 p.m. to 6 p.m.).
Biological clocks play a major role in many organisms. A

number of chronobiology studies covering gene expression and
metabolome profiling have sought to better understand the
underlying mechanisms of biological clocks. In this regard, the
estimation of internal body time is essential in chronotherapy.16

A recent study has shown that by identifying temporal
fluctuations via liquid-chromatography−mass spectrometry
(LC-MS) in plasma metabolites, internal body time could
accurately be predicted within 3 h with two samples drawn 12 h
apart.5 We have shown that, similarly to LC-MS identification
of plasma fluctuating metabolites, real-time breath analysis can
be used to track human physiological modulations ultimately
reflected in exhaled breath. Moreover, it should be possible to
predict the time at which a given sample was collected with a
precision of at least 2−3 h.

■ CONCLUSIONS
By monitoring the diurnal variations of the breath composition
of 12 individuals during 9 days, we found a group of
compounds whose concentrations in breath significantly differ,

depending on the time of the analysis. Statistical analysis of the
breathprints reveals a clear temporal evolution common to all
subjects. Furthermore, the time slot at which the breath
samples were analyzed could be correctly predicted in 84% of
the cases. We conclude that real-time mass spectrometric
breathprinting may become a useful analytical approach,
complementary to traditional techniques (i.e., NMR and LC/
MS) to investigate open questions in the field of chrono-
biology. In particular, for the development of methods to
estimate individual’s internal body time to maximize the
efficiency of drug delivery (i.e., chronotherapy). Further
investigations will be conducted to extend these measurements
during a 40 h cycle to cover the whole circadian clock.
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Figure 3. (a) Projection of the 203 breath mass spectra onto a PCA/CA 2-dimensional subspace. The temporal evolution during the course of the
day becomes evident. (b) Validation of the model: confusion matrix summarizing the classification results of a k-fold cross validation (k = 5%)
repeated 1000 times. The average recognition score of the time slot at which the sample was exhaled was 84%. Note that in the cases in which the
breath sample was misclassified, it was confused with an adjacent time slot. (c and d) Global loading coefficients representing the relative
contribution of each of the mass spectral peaks to the separation shown in part a. Positive values in part c (dimension C1) denote increased levels in
measurements taken after 1 p.m., and negative values decreased levels. Positive values in part d (dimension C2) represent relative increased levels in
morning and late af ternoon vs. before and after lunch measurements, and negative values relatively decreased levels.
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Hernańdez, M.; Fernańdez de la Mora, J. J. Am. Soc. Mass Spectrom.
2009, 20, 287−294.
(16) Hrushesky, W. J. Science (N.Y.) 1985, 228, 73−75.

Analytical Chemistry Article

dx.doi.org/10.1021/ac3029097 | Anal. Chem. 2013, 85, 369−373373


